skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tilgner, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. RO 2 + OH reactions at atmospheric conditions lead to widespread levels of the previously omitted strong oxidizing agent ROOOH. 
    more » « less
  2. Abstract. Acidity, defined as pH, is a central component of aqueouschemistry. In the atmosphere, the acidity of condensed phases (aerosolparticles, cloud water, and fog droplets) governs the phase partitioning ofsemivolatile gases such as HNO3, NH3, HCl, and organic acids andbases as well as chemical reaction rates. It has implications for theatmospheric lifetime of pollutants, deposition, and human health. Despiteits fundamental role in atmospheric processes, only recently has this fieldseen a growth in the number of studies on particle acidity. Even with thisgrowth, many fine-particle pH estimates must be based on thermodynamic modelcalculations since no operational techniques exist for direct measurements.Current information indicates acidic fine particles are ubiquitous, butobservationally constrained pH estimates are limited in spatial and temporalcoverage. Clouds and fogs are also generally acidic, but to a lesser degreethan particles, and have a range of pH that is quite sensitive toanthropogenic emissions of sulfur and nitrogen oxides, as well as ambientammonia. Historical measurements indicate that cloud and fog droplet pH haschanged in recent decades in response to controls on anthropogenicemissions, while the limited trend data for aerosol particles indicateacidity may be relatively constant due to the semivolatile nature of thekey acids and bases and buffering in particles. This paper reviews andsynthesizes the current state of knowledge on the acidity of atmosphericcondensed phases, specifically particles and cloud droplets. It includesrecommendations for estimating acidity and pH, standard nomenclature, asynthesis of current pH estimates based on observations, and new modelcalculations on the local and global scale. 
    more » « less
  3. Abstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models. 
    more » « less